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a b s t r a c t

We used Mayer sampling technique—a method based on free energy perturbation, to calculate virial
coefficients B2–B6 for hard-core Yukawa fluids with interaction range parameter, �= 1.8, 3.0, 4.0, 5.0, 8.0,
9.0, and 10. We used these coefficients in the virial equation of state (VEOS) to obtain compressibility
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factor, Z, at super critical temperatures and found to be in excellent agreement with the predictions of
equations of state based on mean spherical approximation (EOS-MSA) for Yukawa fluids up to a reduced
density, �*, of 0.5. We inspected virial coefficients in representing the PVT behavior along the saturated
vapor line of Yukawa fluids. VEOS4, VEOS5 and VEOS6 describe the PVT behavior along the saturated
vapor line reasonably good for �= 1.8, 3.0 and 4.0; and at higher �, VEOS4 and VEOS5 represent the PVT
behavior better than the series that includes B6. We also report critical properties of Yukawa fluids based

ith th
on VEOS and compared w

. Introduction

The virial equation of state [1] expresses the deviations from
deal behavior as an infinite power series in �:

P

kT
= � + B2(T)�2 + B3(T)�3 + B4(T)�4 + B5(T)�5 + · · ·· · ·, (1)

here P is the pressure, � is the number density, k is the Boltzmann
onstant, T is the absolute temperature, and Bi is the ith virial coef-
cient. The virial equation of state provides a simple and reliable
ay to calculate the thermodynamic properties of real gases [2,3].
owever, its success depends on the accuracy of the determination
f all the virial coefficients up to the given order and convergence of
he virial expansion [4]. These coefficients play a vital role in under-
tanding the gas-phase molecular clustering phenomena in simple
ennard-Jones fluids [5] and real fluids such as water [6,7].

Virial coefficients of fluids [8–11] can be determined by a num-
er of different experimental methods [12–14] and from many
orrelations such as due to Meng et al. [15–18], and Tronopou-
os [19,20] which are based on corresponding states principle.
hese experimental methods and correlations are useful only for
he calculation of second and third virial coefficients. In order to
alculate higher order integrals, researchers developed molecu-

ar based simulation methods such as hit-and-miss Monte Carlo
nd numerical integration [21,22]. Simple Monte Carlo technique
s utilized by Masters and co-workers [23] to evaluate virial coeffi-
ients, up to eighth order of, hard convex bodies, hard-spheres with

∗ Corresponding author.
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an attractive square-well potential and a two-component mixture
of hard-spheres. On the other hand, numerical integration based
method is used by Vega and co-workers [21,22,24,25] to calcu-
late second, third and fourth virial coefficients of the two-center
Lennard-Jones molecules embedded with point quadrupole and
dipole moments.

Recently, Kofke and co-workers introduced Mayer sampling
method [26], based on free energy perturbation techniques, for the
calculation of higher order virial coefficients. Using this technique,
virial coefficients for Lennard-Jones fluid [26], square-well (SW)
model potential [27], square-well based model associating fluids
[27] and water models [28,29] are determined.

In last few decades many researchers paid much attention to
Yukawa model potential since it has ability to represent many real
fluid systems ranging from simple [30,31] to complex fluids such
as colloidal suspensions [30,32,33], proteins [34,35], polymer solu-
tions [36], ionic fluids [37], molten salts and liquid metals [38,39],
alloys [40] and dilute solutions of strong electrolytes [41]. An attrac-
tive element of one-Yukawa potential and multi-Yukawa [33,42,43]
model potential is that analytical solution of the Ornstein-Zernike
integral equation is feasible within the mean spherical approx-
imation (MSA) [44–47] approach. Using these explicit analytical
solutions based on MSA numerous researchers predicted the struc-
ture, thermodynamic properties [46–49] and phase equilibria
[47,48,50] of pure and binary mixtures of hard-core Yukawa fluids
of variable range.
The Yukawa potential [41] is given by the following expression:

u(r) =
{∞, r ≤ �

−εexp[−�(r/� − 1)]
r/�

, r ≥ � , (2)

http://www.sciencedirect.com/science/journal/03783812
http://www.elsevier.com/locate/fluid
mailto:jayantks@iitk.ac.in
dx.doi.org/10.1016/j.fluid.2009.06.019
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Fig. 1. Hard-core Yukawa potential with various interaction ranges.

here ε is the potential depth, � is the molecular diameter and �
s the range of interaction. The limit �→ ∞ corresponds to a hard-
phere potential. The Yukawa potential with various values of � is
hown in Fig. 1.

In recent years molecular simulation has become a successful
ool in estimating the properties of bulk Yukawa fluids [48,51,52]
nd their mixtures [53,54]. Such calculations are being conducted
sing canonical ensemble Monte Carlo (CMC) [48,55] and canon-

cal ensemble molecular dynamics (CMD) [55] for structure and
hermodynamic properties. However, for phase equilibria cal-
ulations Gibbs ensemble Monte Carlo (GEMC) [48,56,57] and
rand-canonical transition matrix Monte Carlo (GC-TMMC) [51]
echniques have been used preferentially.

In the present work, we apply Mayer sampling technique to
nd virial coefficients for hard-core Yukawa fluids with interaction
ange, �, ranging from 1.8 to 10 and consequently various differ-
nt analysis has been done using viral equation of state. In this
ork, we adopt units such that ε and � are unity. Reduced units
sed in this study are: temperature T* = kT/ε, density �* =��3, pres-
ure P* = P�3/ε and virial coefficients Bi* = Bi/bi−1, where Bi is the ith
irial coefficient and b = 2��3/3 is the second virial coefficient of
he hard-sphere. The rest of the paper proceeds as follows: In the
ext section, we briefly outline the Mayer sampling methodology
ogether with MSA EOS; the results and discussions are given in sec
II and finally, concluding remarks in sec IV.

. Methodology

In this work, we use Mayer sampling method, to evaluate virial
oefficients. Complete description of the method is given elsewhere
6,26–29]. However, we briefly illustrate the methodology here.
he method is based on performing molecular simulation on the
olecules represented in the cluster integral appearing in the sta-

istical mechanical formulation of virial coefficients. In this method,
rst, we generate configurations of molecules using Metropolis MC
58] with importance sampling based on the magnitude of the
nteractions represented in the cluster integral. Second, we need
o evaluate the ratio of the desired cluster integral to a known ref-
rence integral. We do not attempt to evaluate the cluster integral
irectly. The umbrella sampling method provides one such formula

� 〈�/�〉�
(T) = �0�0
= �0 〈�0/�〉�

. (3)

In the above expression, � (T) represents a cluster integral or
um of integrals with integrand � (rn; T). The angle brackets indi-
ate the “ensemble average” integral over all configurations and
Equilibria 285 (2009) 36–43 37

orientations of the n molecules, and the subscript � indicates that
the integral is weighted by the normalized � distribution. The sub-
script ‘0’ indicates a quantity for a reference system, for which � 0
is known. The method involves perturbations directly between the
target system (which governs sampling) and the reference system.

There are many choices one can select for the� distribution and
the reference cluster [26]. In this work we have used � = |� (rn; T)|,
as suggested by the importance sampling approach. We use� as the
absolute value of the sum of all clusters. By choosing this definition
for �, the Eq. (3) can be expressed as

� (T) = �0
〈sgn(�)〉�
〈�0/�〉�

, (4)

where sgn (�) is just the sign of the cluster sum. Therefore, each
term in numerator average is +1 or −1.

Regarding the reference cluster one must select a system whose
phase space is a subset of the phase space of the target system
[59,60]. In this work, we use the ring-shaped cluster with a hard-
sphere potential as a reference for sampling simulations.

The virial coefficient calculations of Yukawa fluids are conducted
as follows. MC sampling is performed for a number of molecules
equal to the order of the virial coefficient being computed. Trial con-
figurations are generated using molecular displacement MC move
and cluster MC moves [26] for Yukawa fluids. Each trial is accepted
with probability min (1, �new/�old), where � is defined as the
absolute value of the weighted sum of the cluster integrands con-
tributing to the calculated virial coefficient. The value of a cluster
for a given configuration is determined by summing the contribu-
tions of all unique permutations of the labeling of the molecules.
In this work, 109 configurations are generated for the estimation of
virial coefficients. Step sizes for the trials were adjusted in a short
“equilibration” period, before accumulating averages, to achieve a
50% acceptance rate for trial moves.

Virial coefficients up to B4 can easily be calculated within 24 h
on a single core of quad core processor. For higher-order coeffi-
cients (B5 and B6), longer runs are required to collect the required
number of configurations. For example, calculating B5 at a given
temperature required 95–100 h on a single core of quad core Intel
2.66 GHz processor to generate 109 configurations. In this work, four
independent runs are conducted to obtain the statistical error. All
simulations in this work are performed with the etomica molecular
simulation suite [61].

One of the main objectives of this work is to compare the VEOS
with the literature data available. We have taken molecular simula-
tion data wherever available however analytical expression based
on MSA is also solved for the comparison. The following describe
briefly the MSA theory.

Explicit analytical expressions for the Helmholtz free energy, A,
can be expressed in terms of the inverse temperature expansion of
the MSA free energy [44,48]:

A

NkT
= A0

NkT
+

5∑
n=1

An
NkT

A0

NkT
= AHS,ex

NkT
+ Aid

NkT
,

Aid

NkT
= ln�∗ − 1

(5)

where, �* =��3 is the reduced density, A0 and Aid is the Helmoltz
free energy of the hard-sphere and the ideal gas, respectively. The
above expression of Aid corresponds to sigma as the de Broglie wave

length. The excess free energy of a hard-sphere fluid, AHS,ex is given
by Carnahan and Starling [62] expression:

AHS,ex

NkT
= 	 (4 − 3	)

(1 − 	)2
, (6)
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Table 1
Virial coefficients of a Yukawa fluid with interaction range, �= 1.8, as calculated
using Mayer sampling method. Numbers in the subscript indicate the 67% confidence
limits of the last digit of the reported value.

T* B2/b B3/b2 B4/b3 B5/b4 B6/b5

0.7 −3.8592 −1.168919 −11.73818 −102.2615 −85948

0.8 −3.0881 −0.11842 −2.9393 −19.0140 −12612

0.9 −2.52873 0.27912 −0.5933 −3.73620 −17.0797

1.0 −2.10435 0.433610 0.062432 −0.60711 −2.419156

1.15 −1.63033 0.49982 0.247412 0.044218 −0.10741

1.5 −0.93953 0.48151 0.18673 0.006319 −0.02720

2.0 −0.41081 0.44331 0.15731 0.04495 0.046576

3.0 0.08701 0.43701 0.19943 0.11061 0.066410

5.0 0.46461 0.47541 0.25201 0.12601 0.04794

10.0 0.73711 0.53541 0.28101 0.11911 0.03931

20.0 0.86971 0.57641 0.28751 0.11401 0.03821

Table 2
Virial coefficients of a Yukawa fluid with interaction range, �= 3.0, as calculated
using Mayer sampling method. Numbers in the subscript indicate the 67% confidence
limits of the last digit of the reported value.

T* B2/b B3/b2 B4/b3 B5/b4 B6/b5

0.6 −2.24253 0.28326 −0.282260 −2.13616 −112

0.65 −1.89202 0.44797 0.231743 −0.10013 −0.4531

0.7 −1.60914 0.50644 0.326664 0.11414 −0.23063

0.75 −1.37712 0.51682 0.291624 0.053976 −0.728102

1.0 −0.64451 0.43211 0.11194 −0.045121 −0.004960

1.2 −0.31881 0.38551 0.09873 0.01853 0.054740

1.5 −0.01691 0.36291 0.12781 0.07266 0.058425

2.0 0.26391 0.37351 0.17591 0.10112 0.04998

3.0 0.5258 0.4207 0.2245 0.1118 0.0449
8 D.J. Naresh, J.K. Singh / Fluid

here,	=���3/6 is the packing density. The expression for the free
nergy in Eq. (5) is given by Henderson et al. [63].

An
NkT

= − vn
2n

(
ε

kT

)n
+ Fn

(
ε

kT

)n
, (7)

where

v1 = 2˛0/
0,

v2 = −2w(˛1 − 1 − ˛0 )/(�
0),

v3 = −2w2(˛1 − 1 − ˛0 )(1 + 3� )/(�3
0),

v4 = −4w3(˛1 − 1 − ˛0 )(1 + 4� + 6�2 2)/(�5
0),

v5 = −10w4(˛1 − 1 − ˛0 )(1 + 5� + 11�2 2 + 11�3 3)/(�7
0),
(8)

˛0 = L(�)/(�2(1 − 	)2),

˛1 = 12	(1 + �/2)/(�2(1 − 	)),


0 = (exp(−�)L(�) + S(�))/(�3(1 − 	)2),

 = �2(1 − 	)2 (1 − exp(−�))
(exp(−�)L(�) + S(�))

− 12	(1 − 	)
(1 − �/2) − (1 + �/2) exp(−�)

(exp(−�)L(�) + S(�))
,

(9)

w = 6	/
2
0,

L(�) = 12	((1 + 	/2)�+ 1 + 2	),

S(�) = (1 − 	)2�3 + 6	(1 − 	)�2 + 18	2�− 12	(1 + 2	),

(10)

F1 = F2 = 0,

F3 = − 2	((1 − 	)4)
2

((1 + 2	)2)
2
(1 + 3�)

,

F4 = − 	((1 − 	)4)
3

((1 + 2	)2)
3
(4(1 + 2�))

,

F5 = − 	((1 − 	)4)
4

((1 + 2	)2)
4
(10(3 + 5�))

.

(11)

Note that Fn terms are based on the compressibility approx-
mation [64]. The corresponding analytical expressions for the
ompressibility factor (Z = PV/NkT) and internal energy (U/NkT) can
e obtained as follows:

Z =
5∑
n=1

Zn =
5∑
n=1

PnV

NkT
,

Zn = 	∂(An/NkT)
∂	

,

U

NkT
=

5∑
n=1

Un
NkT

,

Un
NkT

= −T∗∂(An/NkT)
∂T∗ .

(12)

here, T* = kT/�.
The excess chemical potential can be given by
�ex

kT
= Aex

NkT
+ PV

NkT
− 1. (13)

In order to account the higher order terms, we used the Pade’s
pproximation,

APade

NkT
= A0

NkT
+ A1

NkT
+ A2

NkT
+ A3

NkT
+ A4

NkT

(
1 − A5/NkT

A4/NkT

)−1

, (14)
1 1 1 1 2

5.0 0.72231 0.48531 0.25641 0.11362 0.04171

10.0 0.86411 0.54891 0.27431 0.11281 0.03971

20.0 0.93271 0.58541 0.28121 0.11181 0.03891

Zpade = ZHS + Z1 + Z2 + Z3 + Z4

(
1 − A5/NkT

A4/NkT

)

+ A4

NkT

(
Z5

A4/NkT
− Z4A5/NkT

(A4/NkT)2

)
, (15)

Upade

NkT
= U1

NkT
+ U2

NkT
+ U3

NkT
+ U4

NkT

(
1 − A5/NkT

A4/NkT

)

+ A4

NkT

(
U5/NkT

A4/NkT
− (U4/NkT)(A5/NkT)

(A4/NkT)2

)
. (16)

The compressibility factor of the hard-sphere fluid is obtained
from the following expression, given by Carnahan and Starling [62]:

ZHS = (1 + 	+ 	2 − 	3)

(1 − 	)3
. (17)

In this work, we used Eq. (15) to calculate compressibility fac-
tor (Z) based on EOS-MSA for comparison with that due to virial
equation of state (VEOS).

3. Results and discussion

We start our discussion on the behavior of B∗
2–B∗

6 of hard-core
Yukawa fluids as a function of temperature and interaction range.
Tables 1–7 present virial coefficients of hard-core Yukawa fluids, up

to sixth order, at various interaction range, �= 1.8, 3.0, 4.0, 5.0, 8.0,
9.0, and 10.0, due to Mayer sampling. Figs. 2 and 3 present a plot
of B∗

3 and B∗
4, respectively, as a function of temperature for Yukawa

fluids of different interaction ranges. B∗
3 is observed to be nega-

tive at sub critical temperature, as seen also for LJ [26], SW and
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Table 3
Virial coefficients of a Yukawa fluid with interaction range, �= 4.0, as calculated
using Mayer sampling method. Numbers in the subscript indicate the 67% confidence
limits of the last digit of the reported value.

T* B2/b B3/b2 B4/b3 B5/b4 B6/b5

0.5 −2.09311 0.315322 0.011357 −0.90573 −4.49

0.53 −1.81913 0.44837 0.331439 0.10216 0.33054

0.56 −1.58914 0.50425 0.380763 0.1887 −1.3217

0.7 −0.87181 0.46203 0.142911 −0.0982 −0.06369

1.0 −0.17181 0.33552 0.07952 0.03447 0.048877

1.2 0.06231 0.32091 0.11211 0.06843 0.046910

1.5 0.27861 0.33242 0.15273 0.08711 0.04204

2.0 0.47901 0.37051 0.19271 0.09773 0.04151

3.0 0.66511 0.43361 0.22841 0.10461 0.04111

5.0 0.80461 0.50041 0.25341 0.10851 0.04022

10.0 0.90431 0.55921 0.27061 0.11021 0.03941

20.0 0.95261 0.59131 0.27871 0.11031 0.03901

Table 4
Virial coefficients of a Yukawa fluid with interaction range, �= 5.0, as calculated
using Mayer sampling method. Numbers in the subscript indicate the 67% confidence
limits of the last digit of the reported value.

T* B2/b B3/b2 B4/b3 B5/b4 B6/b5

0.45 −1.89315 0.38924 0.300385 0.12572 0.97663

0.51 −1.34391 0.51182 0.341722 0.03918 −0.521104

0.6 −0.82042 0.44241 0.11932 −0.1074 −0.07183

0.7 −0.45642 0.36041 0.05264 −0.03439 0.0298

1.0 0.09192 0.29041 0.09911 0.06112 0.035010

1.2 0.27441 0.30111 0.13392 0.07553 0.03598

1.5 0.44281 0.33272 0.16781 0.08511 0.03682

2.0 0.59821 0.38321 0.19922 0.09321 0.03784

3.0 0.74211 0.45031 0.22861 0.10051 0.03901

5.0 0.84971 0.51441 0.25151 0.10541 0.03911

10.0 0.92641 0.56771 0.26891 0.10831 0.03891

20.0 0.96361 0.59581 0.27781 0.10941 0.03871

Table 5
Virial coefficients of a Yukawa fluid with interaction range, �= 8.0, as calculated
using Mayer sampling method. Numbers in the subscript indicate the 67% confidence
limits of the last digit of the reported value.

T* B2/b B3/b2 B4/b3 B5/b4 B6/b5

0.35 −1.39681 0.317013 0.2798170 0.21079 −92

0.4 −1.18232 0.47226 0.270253 −0.0453119 −1.1386

0.5 −0.46321 0.32271 0.02916 −0.040318 0.05735

0.6 −0.09422 0.24931 0.04341 0.02738 0.023770

0.7 0.12801 0.23641 0.07761 0.04633 0.024110

1.0 0.45991 0.28781 0.13941 0.06571 0.02793

1.5 0.67031 0.37713 0.18391 0.08041 0.03202

2.0 0.76282 0.43262 0.20681 0.08791 0.03401

3.0 0.84811 0.49331 0.23131 0.09531 0.03581

5.0 0.91161 0.54461 0.25231 0.10131 0.03711

Table 6
Virial coefficients of a Yukawa fluid with interaction range, �= 9.0, as calculated
using Mayer sampling method. Numbers in the subscript indicate the 67% confidence
limits of the last digit of the reported value.

T* B2/b B3/b2 B4/b3 B5/b4 B6/b5

0.34 −1.70165 0.380119 0.3675143 0.25869 −52

0.35 −1.53572 0.436121 0.402963 0.17935 −32

0.4 −0.93072 0.42798 0.147046 −0.122080 −0.653172

0.5 −0.29231 0.27343 0.02222 −0.00474 0.013347

0.6 0.03461 0.17031 0.05712 0.03663 0.021064

0.7 0.23111 0.23124 0.09041 0.04872 0.022510

1.0 0.52451 0.30071 0.14561 0.06561 0.02743

1.5 0.71002 0.39281 0.18701 0.08001 0.03132

2.0 0.79151 0.44671 0.20921 0.08731 0.03342

3.0 0.86651 0.50401 0.23301 0.09481 0.03531

5.0 0.92241 0.55161 0.25361 0.10091 0.03681

Table 7
Virial coefficients of a Yukawa fluid with interaction range, �= 10.0, as calculated
using Mayer sampling method. Numbers in the subscript indicate the 67% confidence
limits of the last digit of the reported value.

T* B2/b B3/b2 B4/b3 B5/b4 B6/b5

0.33 −1.59438 0.405140 0.3945121 0.30830 5.7384

0.34 −1.42503 0.444319 0.3562179 0.15681 6.2647

0.4 −0.73132 0.37533 0.069419 −0.101386 0.0818

0.5 −0.15722 0.23961 0.02893 0.01637 0.01544

0.6 0.13621 0.21661 0.06991 0.04042 0.019232

0.7 0.31262 0.23351 0.10041 0.04971 0.02162

1.0 0.57531 0.31491 0.15061 0.06601 0.02683

1.5 0.74121 0.40731 0.19021 0.07991 0.03091

2.0 0.81401 0.45921 0.21181 0.08685 0.03301

3.0 0.88101 0.51331 0.23501 0.09462 0.03491

5.0 0.93081 0.55761 0.25491 0.10062 0.03641

Fig. 2. Temperature dependence of B∗
3 of Yukawa fluids at �= 1.8, 3.0, 4.0, 5.0, 8.0.

9.0 and 10.0.
Fig. 3. Temperature dependence of B∗
4 of Yukawa fluids at �= 1.8, 3.0, 4.0, 5.0, 8.0.

9.0 and 10.0.

associating fluids [27], and quadrupolar two center LJ fluids [24],
and it increases sharply and becomes positive and goes through a
maxima. The peak at which B∗

3 is maximum occurs at lower temper-
ature as � increases. Subsequent increase in temperatures decays
B∗

3 slowly to a minima. The temperature at which the minima occurs
decreases with increasing �. Further, increase in the temperature,

gradually increases the third virial coefficient of Yukawa fluid; with
rate of increase increases with the decreases in the attractive range
of the fluid. The observed trends for B∗

4 are qualitatively similar
to those observed for B∗

3. However, at a substantial high temper-
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dict the PVT behavior along the saturated vapor line of Yukawa
fluids. We compared the predictions of second, third, fourth, fifth
ig. 4. Comparison plot of B∗
2 for square-well fluid with well-extent 1.5, Lennard-

ones fluid and Yukawa fluid at �= 1.8.

ture (beyond the range presented in the plot), B∗
3 of all Yukawa

uids with various interaction ranges appears to approach a com-
on value. It is interesting to observe that this common value is

ery close to the third virial coefficient of the hard-sphere poten-
ial model. This behavior is found for all the virial coefficients. For
xample, at �= 1.8 and T* = 20, B∗

3 and B∗
4 are =0.5764 and 0.2875,

espectively. These values are very close to that of hard-sphere
articles, for which B∗

3 = 0.625 and B∗
4 = 0.2869.

Figs. 4 and 5 present the comparison of virial coefficients of
ennard-Jones, square-well (SW) fluid with well-extent, 1.5 and
ukawa fluid with interaction range parameter,�= 1.8 for B∗

2 and B∗
6,

espectively. At lower temperature range, B∗
2 for all the three fluids

alls on a master curve, but at higher temperature range B∗
2 values of

ennard-Jones fluid are slightly less compared to SW and Yukawa
uids. On the other hand, the trends are quite distinct for B∗

6, as
hown in Fig. 5, where B∗

6 values are different for all the three poten-
ial forms over the entire temperature range; though the qualitative
ehavior is same. This suggests the nature of the potential (soft or
ard) apparently affects significantly the large cluster behavior as
pposed to that of smaller cluster.

In our earlier study on SW fluids [27], we observed a correspond-

ng state plot of virial coefficient for variable interaction range.
imilar investigation is performed in this work. It is interesting to
bserve that all the calculated virial coefficients for Yukawa fluids
all (approximately) on one master curve in a corresponding state

ig. 5. Comparison plot of B∗
6 for square-well fluid with well-extent 1.5, Lennard-

ones fluid and Yukawa fluid at �= 1.8. Inset compares the B∗
6 data for all three fluids

t higher temperatures.
Fig. 6. Corresponding plot of B∗
5 for Yukawa fluids at various interaction ranges.

plot, B∗
i �

∗ i
c vs. T/Tc, where B∗

i , T∗
c and �∗

c (taken from [51]), are the ith
virial coefficient, critical temperature and critical density, respec-
tively. Fig. 6 presents a typical corresponding state plot of B∗

5, where
it is noted that data are not exactly on a master curve at higher tem-
peratures, which may be due to the error associated with the critical
properties.

Having determined virial coefficients B∗
2–B∗

6 for Yukawa fluids,
we now turn our attention to calculate thermodynamic properties
using virial equation of state. Before proceeding for these calcu-
lations, we investigated the range of applicability of VEOS. Fig. 7
shows the plots of Z vs. density, �*, predicted by the sixth order
(VEOS6) virial EOS and compared with the predictions of EOS based
on MSA (EOS-MSA) for Yukawa fluids at �= 1.8. VEOS6 provides
excellent agreement up to a reduced density of 0.5 at super critical
temperatures (T* = 1.5 and 2.0); while at sub-critical temperature
(T* = 1.0), VEOS6 begins to fail at about �* of 0.23. Similar obser-
vations are also found at other interaction ranges (figures are not
shown).

We examined the ability of different truncated virial EOS to pre-
and sixth order truncated virial EOS with molecular simulation data
[51] available in the literature. Figs. 8 and 9 present a typical plots

Fig. 7. Compressibility factor of hard-core Yukawa fluid with interaction range,
�= 1.8. Curves represent the data based on the sixth order (VEOS6) virial EOS and
symbols denote EOS-MSA results.
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ig. 8. Deviation from ideality along the saturated vapor line of hard-core Yukawa
uid at �= 1.8. Filled symbol correspond to the data due to GC-TMMC simulations
51] and open symbols correspond to different truncated virial EOS. Lines are pro-
ided to guide the eye.

f deviation from ideality, Z − 1, against reduced density, �∗
r , pre-

icted by the different truncated virial series and from molecular
imulation data along the saturated vapor line of Yukawa fluids
t interaction range parameter, �= 1.8 and 10.0, respectively. Fig. 8
hows that second order (VEOS2) virial series predictions of non-
deality are in good accordance with the literature data up to a
educed density of 0.15. With the addition of third virial coeffi-
ient, range of applicability of VEOS increases up to the reduced
ensity of 0.42. VEOS4 based prediction is reasonably good until
educed density of 0.57. The behavior of VEOS is not affected by
he presence of 5th and 6th virial coefficients. For the present den-
ity range available in the literature, deviation from ideality (Z − 1)
ased on VEOS4, VEOS5 and VEOS6 fall within 1% of the literature
ata. Similar observations are found at other interaction ranges,
= 3.0 and 4.0. However, at higher interaction ranges, �= 8.0, 9.0
nd 10.0 VEOS4 and VEOS5 predictions are found to be in good
greement with literature data as shown in Fig. 9 for the interaction
ange 10.0. In this case VEOS6 fails at higher densities. In summary,
t any given interaction range,�, and density VEOS4 is the most use-

ig. 9. Deviation from ideality along the saturated vapor line of hard-core Yukawa
uid at �= 10.0. Filled symbol correspond to data due to GC-TMMC simulations [51]
nd open symbols correspond to different truncated virial EOS. Lines are provided
o guide the eye.
Fig. 10. Critical temperature, T∗
c , as a function of interaction range,�. Lines represent

the results of different truncated virial EOS. Filled circles represent the data of GC-
MMC [51]. Filled squares represent the data of EOS-MSA [47].

ful virial EOS to predict the PVT behavior along the saturated vapor
line of hard-core Yukawa fluids.

Critical properties can easily be estimated from virial equation
of state. The critical properties are determined from the following
thermodynamic conditions [65]:(
∂p

∂V

)
Tc

= 0,(
∂2p

∂V2

)
Tc

= 0.
(18)

In order to solve the above equations, we have fitted our virial
coefficient data to the following equation containing exponential
based terms.

Bi(T) = f0 + f1x + f2x2 + f3x3 + f4x4 + · · ·· · · (19)

here, x = exp(1/T*) and fi are constants. The number of terms to
be used in the above equation for a particular virial coefficient
is dependent on the accuracy of the fit in representing the virial
coefficient data.

We calculated critical properties; temperatureT∗
c , density�∗

c and
pressure P∗

c of Yukawa fluids at various interaction range parame-
ters: �= 1.8, 3.0, 4.0, 5.0, 8.0, 9.0, 10.0. These critical properties are
estimated using the third (VEOS3), fourth (VEOS4) and fifth (VEOS5)
order truncated virial EOS and compared with literature values.
VEOS6 is not considered for critical property calculation due to inac-
curate fit of the B∗

6 data to an equation form. Table 8 presents all the
estimated critical properties based on different truncated series.
The literature values of estimated critical temperature of Yukawa
fluids substantially varies as these properties are determined from
different means such as perturbation theory [66], exact MSA [44],
truncated MSA [47] up to fifth term, Gibbs ensemble Monte Carlo
simulation (GEMC) [57,67] and grand-canonical transition matrix
Monte Carlo simulation (GC-TMMC) [51]. The performance of dif-
ferent truncated VEOS for the estimation of critical temperature
fluctuates with the interaction parameter. Fig. 10 presents the plot
of critical temperature as a function of interaction range parameter,
which clearly indicates that at lower interaction range parameter,
�= 1.8, 3.0 and 4.0), T∗

c determined from VEOS4 and VEOS5 are in
good agreement with T∗

c predicted from GCMC simulation. On the
∗
other hand, Tc estimated using VEOS3 are in good agreement with

that due to MSA approach. However, the variation from literature
value is marginal. At higher � values, 8.0, 9.0 and 10.0, critical tem-
perature predicted by fifth order (VEOS5) truncated virial series are
in good agreement with literature values compared to that based
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Table 8
The critical temperature T∗

c , density �∗
c and pressure P∗

c of Yukawa fluids of variable
interaction range, � estimated from virial equation of state (VEOS) and compared
with literature values.

� T∗
c �∗

c P∗
c Source

1.8 1.3071 0.3622 0.1507 This work (VEOS3)
1.2084 0.2832 0.1288 This work (VEOS4)
1.1922 0.2682 0.1172 This work (VEOS5)
1.1928 0.2946 Smit and Frenkela

1.1775 0.31313 Lomba and Almarzab

1.255 0.310 0.148 Henderson et al.c

1.210 0.280 Caccamo et al.d

1.24012 0.31864 0.14023 Der-Ming et al.e

1.1801 0.3151 0.1102 Singhf

1.179 0.308 0.102 Gonzalez-Melchor et al.g

3.0 0.7763 0.3854 0.0963 This work (VEOS3)
0.7181 0.2753 0.0682 This work (VEOS4)
0.72516 0.28221 0.06619 This work (VEOS5)
0.71511 0.37527 Lomba and Almarzab

0.764 0.37993 0.10529 Duh et al.e

0.7221 0.3551 0.0721 Singhf

0.725 0.351 0.099 Gonzalez-Melchor et al.g

4.0 0.6062 0.3756 0.0763 This work (VEOS3)
0.5653 0.2664 0.0553 This work (VEOS4)
0.5945 0.3633 0.0811 This work (VEOS5)
0.5766 0.37721 Lomba and Almarzab

0.61432 0.42805 0.099032 Der-Ming et al.e

0.5721 0.3851 0.0571 Singhf

0.593 0.361 0.081 Gonzalez-Melchor et al.g

5.0 0.5316 0.3843 0.0662 This work (VEOS3)
0.52910 0.3865 0.0671 This work (VEOS4)
0.5367 0.3876 0.0771 This work (VEOS5)
0.541 0.472 0.112 Henderson et al.i

0.53053 0.47292 0.099148 Der-Ming et al.e

8.0 0.4139 0.4118 0.0542 This work (VEOS3)
0.41011 0.4715 0.0471 This work (VEOS4)
0.4109 0.2504 0.0552 This work (VEOS5)
0.3822 0.4475 0.0445 Singhf

9.0 0.3701 0.3522 0.0442 This work (VEOS3)
0.4045 0.4137 0.0411 This work (VEOS4)
0.3441 0.2506 0.0312 This work (VEOS5)
0.3622 0.4545 0.0434 Singhf

0.427 0.57 Hagen and Frenkelh

10.0 0.3337 0.3707 0.0381 This work (VEOS3)
0.4164 0.5604 0.0361 This work (VEOS4)
0.3374 0.2914 0.0431 This work (VEOS5)
0.362 0.653 0.121 Henderson et al.i

0.36179 0.65284 0.12129 Der-Ming et al.e

0.3432 0.4712 0.0391 Singhf

a Reference [57].
b Reference [67].
c Reference [66].
d Reference [68].
e Reference [47].
f Reference [51].
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g Reference [55].
h Reference [56].
i Reference [44].

n VEOS3 and VEOS4. Table 8 also presents the critical density
nd pressure obtained from VEOS along with literature data. It is
pparent that VEOS5 is a suitable EOS for lower interaction range
arameter, �= 1.8 − 5.0 for the prediction of critical properties; on
he other hand, at higher �= 8.0, 9.0 and 10.0, VEOS3 compares
avorably for the critical properties.
. Conclusions

Virial coefficients up to sixth order are computed via Mayer sam-
ling method for hard-core attractive Yukawa fluids. The calculated
irial coefficients are used in virial EOS to predict the PVT behav-

[

[
[
[
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ior along the saturated vapor conditions and critical properties
of Yukawa fluids. Along the saturated vapor phase of the coexis-
tence curve, VEOS4 describes the PVT behavior extremely well at
all values of �. Addition of fifth and sixth virial coefficients affects
insignificantly the VEOS series at a lower �; on the other hand, at
higher � inclusion of B5 and B6 deteriorates the performance of
VEOS along the saturation line. VEOS5 based prediction of criti-
cal properties is reasonable for lower interaction range parameter,
�= 1.8 − 5.0; conversely, at higher �= 8.0, 9.0 and 10.0, addition of
virial coefficient higher than B3 do not improve the quality of VEOS
and VEOS3 compares favorably for the critical properties. It is yet
to be seen the effect of B7 and higher order coefficients on the pre-
diction of critical properties and the PVT behavior, which we plan
to study in near future.
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